Busqueda

miércoles, 27 de enero de 2010

Fotones observados a velocidades aparentemente mayores que la de la luz

Escrito por Kanijo en Fí­sica
Fotones más rápidos que la luz
Un fotón viaja a través de capas alternas de un material de índice refractivo bajo (azul) y alto (verde) más rápido o más lento dependiendo del orden de las capas. Una capa adicional estratégicamente añadida puede reducir drásticamente el tiempo de transición.

Investigadores del Instituto Cuántico Conjunto (JQI), una colaboración del Instituto Nacional de Estándares y Tecnología y la Universidad de Maryland en College Park, pueden acelerar fotones (partículas de luz) a velocidades aparentemente mayores que la de la luz a través de una pila de materiales añadiendo una única capa estratégica. Esta demostración experimental confirma las intrigantes predicciones de la física cuántica de que el tránsito de la luz a través de materiales complejos multicapa no necesariamente depende del grosor, como sucede para materiales simples como el vidrio, sino del orden en que se apilen las capas. Éste es el primer estudio publicado sobre esta dependencia en fotones aislados.

Estrictamente hablando, la luz siempre logra su máximo de velocidad en un vacío, y frena apreciablemente cuando viaja a través de una sustancia material, como el vidrio o el agua. Lo mismo es cierto para la luz que viaja a través de una pila de materiales dieléctricos, los cuales son eléctricamente aislantes y pueden usarse para crear estructuras altamente reflectantes que a menudo se usan como coberturas ópticas en espejos y fibra óptica.

En unas medidas experimentales anteriores de seguimiento (ver “A Sub-femtosecond Stop Watch for ‘Photon Finish’ Races”, NIST Tech Beat, 14 de marzo de 2008.), los investigadores del JQI crearon pilas de aproximadamente 30 capas de dieléctricos, cada una de unos 80 nanómetros de grosor, equivalente a aproximadamente un cuarto de la longitud de onda de la luz que viaja por ellos. Las capas alternaban material de índice refractivo alto (H) y bajo (L), lo que provocaba que la luz se curvase o reflejase en cantidades variables. Después de que un fotón asilado impactase en el límite entre las capas H y L, tenía la posibilidad de ser reflejado o pasar a través de ella.

Cuando se encontraban con una pila de 30 capas alternas entre L y H, los pocos fotones que podían penetrar completamente en la pila, la atravesaban en unos 12,84 femtosegundos (femtosegundo, una mil billonésima de segundo). Añadiendo una única capa de bajo índice al final de esta pila se incrementaba desproporcionadamente el tiempo de tránsito del fotón en 3,52 fs a unos 16,36 fs. (El tiempo de tránsito a través de esta capa añadida debería ser de sólo 0,58 fs, si depende del grosor de la capa y el índice refractivo). Por el contrario, añadir una capa H extra a la pila de 30 capas alternas de H y L reduciría el tiempo de tránsito en unos 5,34 fs, por lo que los fotones individuales parecer emerger a través de la pila de 2,6 micras de grosor a velocidades superlumínicas (más rápidas que la luz).

Lo que los investigadores de JQI están viendo puede explicarse mediante las propiedades ondulatorias de la luz. En este experimento, la luz empieza y termina su existencia actuando como una partícula – un fotón. Pero cuando uno de estos fotones impacta en un límite entre las capas de material, crea ondas en cada superficie, y las ondas de luz que viajan interfieren entre sí como las olas opuestas del océano que crean las aguas revueltas de la playa. Con las capas H y L ordenadas de forma adecuada, las ondas de luz interferente se combinan para empujar a los fotones transmitidos que salen antes. No se produce una transferencia de información más rápida que la luz debido a que, en realidad, es similar a una ilusión: sólo una pequeña parte de los fotones atraviesan la pila, si todos los fotones iniciales fueran detectados, los detectores registrarían fotones en una distribución de tiempo normal.


Artículo de Referencia: N. Borjemscaia, S.V. Polyakov, P.D. Lett and A. Migdall, Single-photon propagation through dielectric bandgaps, Optics Express, published online Jan. 21, 2010, doi:10.1364/OE.18.002279.

No hay comentarios: